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PRICING OPTIONS ON VOLATILITY OF VOLATILITY

MODEL BASED ON HESTON’S STOCHASTIC

VOLATILITY WITH CREDIT RISK

Min-Ku Lee*

Abstract. This paper is a research for pricing OTC(over-the-
counter) options to entail default risk occurred by an option writer.
We drive the closed-form pricing formula to approximate the prices
of the so-called vulnerable options introduced by Klein [12] under
the Heston stochastic volatility of volatility(vol-of-vol) model pro-
posed in [5]. In the case of OTC options, the price of both the option
writer’s asset as well as the underling asset must be considered for
pricing the options, unlike in the case of exchange-traded options.
In this paper, we derive the partial differential equations(PDEs)
whose solution is the price of the vulnerable options and solve the
PDEs by asymptotic analysis [4] and the two dimensional Fourier
transform method.

1. Introduction

Since appearance of the Black-Scholes model introduced by Black and
Scholes [1], the researches on option pricing and implied volatility have
been done actively. To overcome phenomenon of volatility smile/skew
observed in financial market data, a variety of models for the price of
underlying asset with stochastic volatility are studied. The local volatil-
ity model with a constant elasticity of variance(so-called, CEV model)
was suggested by Cox [2]. The multiscale stochastic volatility model
whose volatility is driven by a external mean-reverting stochastic pro-
cess was introduced by Fouque et al. [4]. Kim et al. [10] proposed the
stochastic volatility model with a stochastic elasticity of variance(so-
called, SEV model) where the constant elasticity of variance is extended
into an Ornstein-Uhlenbeck(OU) stochastic process. As the Heston’s
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stochastic volatility model proposed by Heston [7] is a representative
one in both practical and theoretical aspects among a variety of sto-
chastic volatility models, the volatility of the model is driven by the
Cox-Ingersoll-Ross(CIR) model [3].

On the other hand, since VIX(volatility index) futures and options
were launched on CBOE(Chicago Board Option Exchange) in 2004 and
2006, the size of VIX derivative market increases significantly.(cf. Luo
et al. [16].) The role of VVIX(volatility of volatiolity index) that means
the volatility of VIX becomes important, because the VVIX is an effec-
tive tool for measuring uncertainty of volatility risk. In line with this
situation, there are research results on underlying asset models with the
vol-of-vol(volatility of volatility). For instant, the literatures [5, 9, 11, 15]
are representative ones about the vol-of-vol model underlying the deriva-
tives on a stock or a volatility index. Fouque et al. [5] researched the
Heston’s stochastic volatility model with vol-of-vol underlying index op-
tions and volatility index options, and the implied volatility under the
model calculated from the S&P 500 and VIX data. Huang et al. [9] in-
vestigated the implication of the volatility of volatility on index options
and volatility index options. Kim and Kim [11] dealt with variance
swaps under the revised Heston’s model with both stochastic elastic-
ity volatility and vol-of-vol, and derived the pricing formula of variance
swaps under the model. The Heston’s stochastic volatility model with
a fast mean-reverting volatility of volatility underlying the value of the
variance swap was studied in the work of Lee et al. [15].

In the option contracts in exchange, an option holder is not ex-
posed to credit risk by the counter party, while the trade of over-the-
counter(OTC) market is vulnerable to the default caused by the option
writer. So, in OTC market, the price of contingent claim should be con-
sidered for the prices of both the underlying asset and the counter party.
Klein [12] introduced the payoff structure that an option writer owns the
other liabilities and claims under the Black-Scholes model [1]. Yang et
al. [19] derived the option pricing formula of the options with the payoff
structure introduced by Klein [12] under the stochastic volatility model
with fast mean-reversion [6]. The Heston’s stochastic volatility model [7]
was used for pricing the so-called vulnerable option [12] in the work of
Lee et al. [13]. In the research of Lee and Kim [14], the Heston’s stochas-
tic volatility was extended to generalized multiscale Heston’s stochastic
volatility with a fast mean-reverting factor.

This paper is organized as follows. In section 2, we formulate the
underling asset pricing model using the vol-of-vol proposed by Fouque
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et al. [5] and the payoff structure of the option vulnerable to credit
risk introduced by Klein [12]. Section 3 provides the partial differential
equations(PDEs) whose solution is the price of the option defined in
section 2. In section 4, we derive the option pricing formula by the
asymptotic analysis [4] and the well-known Fourier transform method.
Section 5 concludes this paper.

2. Model framework and option payoff structure

In OTC market, the contract execution by the option writer can
not be guaranteed at the expiration date T . i.e, the contingent claim is
exposed to credit risk. So, contrary to exchange trading, in OTC market
trading, it needs that the payoff structure of option reflects the price of
option writer’s asset as well as the price of its underlying asset. In this
paper, we introduce the option framework suggested by Klein [12] with
the payoff structure depending on the prices of both the underlying asset
and the counterparty’s asset.

We assume that the underlying asset St and the option writer’s asset
Vt follow the dynamics of the stochastic processes suggested by Fouque
and Saporito [5]. Under a risk-neutral measure Q∗, the stochastic pro-
cess St is the price of the underlying asset whose volatility is driven by
the generalized CIR process Ut. Moreover, the volatility Ut is the sto-
chastic process of which volatility is driven by the fast and slow mean-
reversion stochastic processes Yt and Zt, respectively. The price Vt of
the option write’s asset is also in the form of a generalized Heston’s
stochastic volatility model of which volatility of volatility is driven by
the Ornstein-Uhlenbeck processes Yt and Zt. i.e., the prices of the un-
derlying asset and the option writer’s asset are govern by the stochastic
differential equations(SDEs) given by

dSt
St

= (r − q) dt + σs
√
Ut dW

s
t ,

dUt = κ (m− Ut) dt + f(Yt, Zt)
√
Ut dW

u
t ,

dYt =
Ut
ϵ
a(Yt) dt +

√
Ut
ϵ
b (Yt) dW

y
t ,

dZt = δUt c(Zt) dt +
√
δUt d(Zt) dW

z
t

(2.1)

and

dVt
Vt

= (r − q) dt + σv
√
Ut dW

v
t ,
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where the small constants ϵ and δ satisfy the condition such that the
condition 0 < δ < ϵ <

√
δ ≪ 1. The values of the parameters ϵ and δ

determine the mean-reverting rate of the stochastic processes Yt and Zt,
respectively. Here, the standard Brownian motions W s

t , W
u
t , W

y
t , W

z
t

and W v
t are correlated by

d⟨Ws,Wu⟩ = ρsu dt, d⟨Ws,Wy⟩ = ρsy dt,

d⟨Ws,Wz⟩ = ρsz dt, d⟨Ws,Wv⟩ = ρsv dt,

d⟨Wu,Wy⟩ = ρuy dt, d⟨Wu,Wz⟩ = ρuz dt,

d⟨Wu,Wv⟩ = ρuv dt, d⟨Wy,Wz⟩ = ρyz dt,

d⟨Wy,Wv⟩ = ρyv dt, d⟨Wz,Wv⟩ = ρzv dt.

It is assumed that the mean-reverting stochastic process Yt has an
unique invariant distribution denoted by Φ(·) and the functions a(·), and
b(·) are smooth. f(·, ·) is assumed to be a smooth and bounded function
such that the average

〈
f2(·, z)

〉
is bounded for any real number z. Here,

the notation ⟨·⟩means the average with respect to the probability density
function Φ(·) defined by

⟨g(·)⟩ :=
∫ ∞

−∞
g(y) Φ(y)dy.

A feature that appeared in an OTC market is that contracts of con-
tingent claim have possibility of default. For instant, in case of European
option traded in exchange, if an option holder exercise the contingent
claim at the maturity T , the contract execution can be guaranteed by
exchange. However, even though, in an OTC market, the option holder
wants to exercise the contingent claim at the maturity T , there is a
possibility that the contract may go bankrupt by the option writer. So,
it’s necessary that the pricing of the contingent claim traded in an OTC
market reflects the price VT of option writer’s asset at the maturity
T . Klein [12] proposed the options associasted with credit risk where
the payoff function h(·, ·) depending on the asset prices (ST , VT ) at the
maturity T is defined by

h (s, v) = max(s−K, 0)

(
1{v≥D∗}(v) + 1{v<D∗}(v)

(1− α)v

D

)
.(2.2)

Here, 1A is the indicator function such that 1A(x) becomes 1 if and only if
x is included in a set A, andD∗ is the decision level to determine whether
the contract is default or not. The amountD, which represents liabilities
owned by the option writer, and the constant α, which represents the
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weight ratio of loss incurred due to default or bankruptcy, determines

that the option holder receives the payment proportional to (1−α)
D VT .

3. Derivative pricing and PDE problems

In this section, we define the option price with the payoff (2.2) and
derive the partial differential equations(PDEs) whose solution gives the
option price.

Under the risk-neutral measure Q∗, the price P of the vulnerable
option is defined by

P (t, s, v, u, y, z) = E∗
[
e−r (T−t) h (s, v)

∣∣∣St = s, Vt = v, Ut = u, Yt = y, Zt = z
]
,

(3.1)

where K is a strike price, r is a risk-free interest rate and h is the payoff
function defined in (2.2). It has known that the price P (3.1) in the
form of the expectation can be a PDE problem by the Feynman-Kac
formula(see Oksendel [17]). Applying the Feynman-Kac formula into
the price (3.1), we can gain the PDE problem given by 1

ϵ uL0 +
1√
ϵ
uL1 + L2

+
√
δ√
ϵ
uM0 +

√
δ uM1 + δ uM2

P (t, x, v, u, y, z) = 0,

P (T, s, v, u, y, z) = h(s, v),

(3.2)

where

L0 := a(y)
∂

∂y
+

1

2
b2(y)

∂2

∂y2
,

L1 := ρsy σs b(y) s
∂2

∂s∂y
+ ρuy f(y, z) b(y)

∂2

∂u∂y
+ ρvy σv b(y) v

∂2

∂v∂y
,

L2 :=
∂

∂t
+ (r − q)

(
s
∂

∂s
+ v

∂

∂v

)
+ κ (m− u)

∂

∂u

+
1

2
u

(
σ2s s

2 ∂2

∂s2
+ f2(y, z)

∂2

∂u2
+ σ2v v

2 ∂2

∂v2

)
− r

+ u

(
ρsu σs f(y, z) s

∂2

∂s∂u
+ ρsv σs σv s v

∂2

∂s∂v
+ ρvu f(y, z)σv v

∂2

∂v∂u

)
,

M0 := ρyz b(y) d(z)
∂2

∂y∂z
,
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M1 := ρsz σs d(z) s
∂2

∂s∂z
+ ρuz f(y, z) d(z)

∂2

∂u∂z
+ ρvz σv d(z) v

∂2

∂v∂z
,

M2 := c(z)
∂

∂z
+

1

2
d2(z)

∂2

∂z2

Now and for, we derive the closed-form pricing formula to approximate
the solution of the PDE (3.2).

4. Asymptotic expansion and Fourier transform

In this section, we introduce the series expansion (4.1) to solve the
PDE (3.2), and solve the PDEs by the two dimensional Fourier transform
method and the asymptotic method introduced by Fouque et al. [4].
Then we can approximate the solution P (t, s, v, u, y, z) using the zero
and first order terms in the series expansion given by

P (t, s, v, u, y, z) =
∞∑

i,j=0

ϵ i/2δ j/2Pij(t, s, v, u, y, z).(4.1)

It has known that the solution P̃ ∗ approximated by the zero and first
order terms has the accuracy given by∣∣∣P (t, s, v, u, y, z)− P̃ ∗(t, s, v, u, y, z)

∣∣∣ < C (ϵ+ δ)

for some constant C, where the function P̃ ∗ is defined by

P̃ ∗(t, s, v, u, y, z) :=P00(t, s, v, u, y, z) +
√
ϵP10(t, s, v, u, y, z)

+ δϵP01(t, s, v, u, y, z).

The above accuracy of the solution P̃ ∗ to the price P (t, s, v, u, y, z) has
already known in the work of Fouque et al. [4, 5].

Now, putting the series expansion (4.1) into the PDE (3.2), we can
obtain the equation given by

1

ϵ
u
[
L0P00 +

√
δL0P01 + δL0P02

]
+

1√
ϵ
u

[
L0P10 + L1P00 +

√
δ (L0P11 + L1P01 +M0P00)

+ δ (L0P12 + L1P02 +M0P01)

]
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+ u

[
L0P20 + L1P10 +

1

u
L2P00

+
√
δ

(
L0P21 + L1P11 +

1

u
L2P01 +M0P10 +M1P00

)
+ δ

(
L0P22 + L1P12 +

1

u
L2P02 +M0P11 +M1P01 +M2P00

)]
+
√
ϵ u

[
L0P30 + L1P20 +

1

u
L2P10

+
√
δ

(
L0P31 + L1P21 +

1

u
L2P11 +M0P20 +M1P10

)
+ δ

(
L0P32 + L1P22 +

1

u
L2P12 +M0P21 +M1P11 +M2P10

)]
+ ϵ u

[
L0P40 + L1P30 +

1

u
L2P20

+
√
δ

(
L0P41 + L1P31 +

1

u
L2P21 +M0P30 +M1P20

)
+ δ

(
L0P42 + L1P32 +

1

u
L2P22 +M0P31 +M1P21 +M2P20

)]
+ · · ·
= 0

(4.2)

with the boundary condition

∞∑
i,j=0

ϵ i/2δj/2Pij(T, s, v, u, y, z) = h(s, v).(4.3)

The following lemma provides a robust theoretic foundation for deriving
the PDEs for each function Pij in the series expansion (4.1).

Lemma 4.1. Consider the equation L0Q(t, s, v, u, y, z) = P(t, s, v, u, y, z)
with the infinitesimal generator L0 of the stochastic process Yt in (2.1).
Then it is the existent necessary and sufficient condition for the solution
Q that the function P satisfies ⟨P(t, s, v, u, ·, z)⟩ = 0. Moreover, assume
that P = 0 and the derivative of P with respect to the variable y does
not grow exponentially, nevertheless the variable y goes to infinity. Then
the function Q is independent on the variable y.

Proof. Refer to Fouque et al. [4] and Ramm [18].
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To derive the first order term P10, it is essential to first determine
the second order term P20. In the following lemma, we derive P20 from
(4.2) by using Lemma 4.1.

Lemma 4.2. The second order term P20 depends on the variable y
and is the solution in the form given by

P20(t, s, v, u, y, z) = −


1
2ϕ(y, z)

∂2

∂u2

+ρsu σs ψ(y, z) s
∂2

∂s∂u

+ρvu σv ψ(y, z) v
∂2

∂v∂u

P00(t, s, v, u, y, z)

+ C(t, s, v, u, z),

(4.4)

where C(t, s, v, u, z) is an unspecified function that is constant with re-
spect to the variable y, and the functions ϕ(y, z) and ψ(y, z) are the
solutions of the equations defined by

L0ϕ(y, z) = f2(y, z)−
〈
f2(·, z)

〉
and L0ψ(y, z) = f(y, z)− ⟨f(·, z)⟩ .

(4.5)

Proof. Applying Lemma 4.1 into the δ i/2

ϵ (i = 0, 1, 2) terms, P0,i (i =
0, 1, 2) is independent on the variable y and so we have the equalities
L1P10 = 0 and ⟨L2⟩P00 = 0. Lemma 4.1 yields that O(1) term in (4.2)
becomes the Poisson equation

L0P20 = −1

u
(L2 − ⟨L2⟩)P00

= −


1
2

(
f2(y, z)−

〈
f2(·, z)

〉)
∂2

∂u2

+ρsuσs (f(y, z)− ⟨f(·, z)⟩) s ∂2

∂s∂u

+ρvuσv (f(y, z)− ⟨f(·, z)⟩) v ∂2

∂v∂u

P00,
(4.6)
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where

H := ⟨L2⟩

=
∂

∂t
+ (r − q)

(
s
∂

∂s
+ v

∂

∂v

)
+ κ (m− u)

∂

∂u

+
1

2
u

(
σ2s s

2 ∂2

∂s2
+ σ̄2(z)

∂2

∂u2
+ σ2v v

2 ∂2

∂v2

)
− r

+ u

(
ρsu σs σ̃(z) s

∂2

∂s∂u
+ ρsv σs σv s v

∂2

∂s∂v
+ ρvu σ̃(z)σv v

∂2

∂v∂u

)
,

σ̄(z) :=
(〈
f2(·, z)

〉)1/2
, and σ̃(z) := ⟨f(·, z)⟩ .

From (4.5) and (4.6), we can have the solution (4.4) for a constant
C(t, s, v, u, z) with respect to the variable y.

From the following proposition, we derive the PDEs whose solutions
are the zero and first order terms Pij , (i, j) ∈ {(0, 0), (1, 0), (0, 1)} in
(4.1).

Proposition 4.3. The zero and first order terms Pij , (i, j) ∈ {(0, 0)
(1, 0), (0, 1)} are independent on the variable y, i.e., Pij = Pij(t, s, v, u, z)
and the solutions of the PDEs given, for (i, j) ∈ {(0, 0), (1, 0), (0, 1)}, by

HPij(t, s, v, u, z) = Gij(t, s, v, u, z)

Pij(T, s, v, u, z) = Hij(s, v)
(4.7)

where Gij(t, s, v, u, z) and Hij(s, v) are defined by

Gij(t, s, v, u, z) =


0 , (i, j) = (0, 0)

−u ⟨L1P20(t, s, v, u, ·, z)⟩ , (i, j) = (1, 0)

−u ⟨M1⟩P00(t, s, v, u, z) , (i, j) = (0, 1)

,

and Hij(s, v) =


h(s, v) , (i, j) = (0, 0)

0 , (i, j) ∈ {(1, 0), (0, 1)}
.

Proof. In the proof of Lemma 4.2, we found that P00 and P01 are
independent on the variable y, and P00 is the solution of the PDE
⟨L2⟩P00 = 0. Lemma 4.1 yields that the 1√

ϵ
term in (4.2) becomes

L0P10 = 0, and then P10 is also independent on the variable y. Thus,
we can have the PDE HP10 = −u ⟨L1P20⟩ from the

√
ϵ term in (4.2).
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On the other hand, since L1 and M0 are the derivatives with respect

to the variable y, the
√
δ√
ϵ
term in (4.2) becomes L0P11 = 0, and so

P11 is independent on the variable y. Hence, we can derive the PDE
uL0P21 + L2P01 + uM1P00 = 0 to be HP01 = −u ⟨M1⟩P00, from the√
δ term, by Lemma 4.1. Moreover, the boundary condition Hij(s, v) at

the maturity T can be obtained by applying (4.1) into (4.3).

In the following proposition, we solve the PDEs (4.7) of Pij , (i, j) ∈
{(0, 0), (1, 0), (0, 1)} by the Fourier transform method(cf. Lee et al. [13],
and Lee and Kim [14]).

Proposition 4.4. The zero order term P00 and the first order terms
Pij , (i, j) ∈ {(1, 0), (0, 1)} are provided by

Pij(t, s, v, u, z) =
e−r τ

(2π)2

∫∫
R2

e−i(kx+lw)Ã(τ, k, l, u, z) B̃ij(τ, k, l, u, z) ĥ(k, l) dk dl,

where the variables τ , x and v are defined by

τ(t) = T − t, x(t, s) = (r − q) τ(t) + ln s, w(τ, v) = (r − q) τ(t) + ln v,
(4.8)

the functions ĥ, Ã and B̃ij , (i, j) ∈ {(1, 0), (0, 1)} are given by

ĥ(k, l) = − K1+ik

k2 − ik
(D∗)il

(
(1− α)

D

D∗

il + 1
− 1

il

)
, (k > 1, 0 < l < 1)

Ã(τ, k, l, u, z) = eA
0(τ,k,l,z)+uA1(τ,k,l,z)

B̃ij(τ, k, l, u, z) =


1 , (i, j) = (0, 0)

i+2j∑
n=0

unB n | ij(τ, k, l, z) , (i, j) = {(1, 0), (0, 1)}
,

(4.9)

andAn, n ∈ {0, 1} andBn | ij , n ∈ {0, 1, · · · , i+2j}, (i, j) ∈ {(1, 0), (0, 1)}
in (4.9) are appeared in Appendix.

Proof. First of all, the PDE of P00 in (4.7) is same with the case of the
price of the vulnerable option on the Heston’s stochastic volatility model
[7]. The solution P00 has already been obtained in the work of Lee et al.
[13], so we omit the detail processes for solving the PDE of P00 in (4.7).
It remains to derive the solutions Pij , (i, j) ∈ {(1, 0), (0, 1)} satisfying
the PDEs (4.7) obtained in Proposition 4.3. Changing the variables t,

s, v and Pij by τ , x, w and P̌ij(τ, x, w, u, z) := er τ(t)Pij(t, s, v, u, z),
respectively, such as the substitutions (4.8) and plugging the function
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P20 obtained in Lemma 4.2 into the PDEs (4.7), we can have the PDEs
of P̌ij , (i, j), ∈ {(1, 0), (0, 1)} given by

ȞP̌ij(τ, x, w, u, z) = uŇijP̌00(τ, x, w, u, z)

P̌ij(0, x, w, u, z) = 0

, (i, j) ∈ {(1, 0), (0, 1)},

(4.10)

where

Ȟ := − ∂

∂τ
+ κ (m− u)

∂

∂u

+ u

(
ρsu σs σ̃(z)

∂2

∂x∂u
+ ρsv σs σv

∂2

∂x∂w
+ ρvu σv σ̃(z)

∂2

∂w∂u

)
+

1

2
u

[
σ2s

(
∂2

∂x2
− ∂

∂x

)
+ σ̄2(z)

∂2

∂u2
+ σ2v

(
∂2

∂w2
− ∂

∂w

)]
·,

Ňij =





1
2


ρsyσs

〈
b(·)∂ϕ(·,z)∂y

〉
∂3

∂x∂u2

+ρuy

〈
f(·, z)b(·)∂ϕ(·,z)∂y

〉
∂3

∂u3

+ρvyσv

〈
b(·)∂ϕ(·,z)∂y

〉
∂3

∂w∂u2



+
〈
b(·)∂ψ(·,z)∂y

〉

ρsyρsuσ

2
s
∂2

∂x2

+σsσv (ρvyρsu + ρsyρvu)
∂2

∂x∂w

+ρvyρvuσ
2
v
∂2

∂w2


∂
∂u

+
〈
f(·, z)b(·)∂ψ(·,z)∂y

〉
ρuy

(
ρsuσs

∂
∂x + ρvuσv

∂
∂w

)
∂2

∂u2



, (i, j) = (1, 0)

−d(z)
(
ρszσs

∂
∂x + ρuzσ̃(z)

∂
∂u + ρvzσv

∂
∂w

)
∂
∂z

, (i, j) = (0, 1)

Now, for applying the Fourier transform into (4.10), we define the func-

tions P̂ij by

P̂ij(τ, k, l, u, z) =

∫∫
R2

ei(kx+lw)P̌ij(τ, x, w, u, z) dx dew(4.11)
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and then, by the inverse Fourier transform, (4.11) becomes

P̌ij(τ, x, w, u, z) =
1

(2π)2

∫∫
R2

e−i(kx+lw)P̂ij(τ, k, l, u, z) dk dl.(4.12)

Applying (4.12) into the PDEs (4.10), we can have the PDEs

ĤP̂ij(τ, k, l, u, z) = uN̂ijP̂00(τ, k, l, u, z)

P̂ij(0, k, l, u, z) = 0

, (i, j) ∈ {(1, 0), (0, 1)},(4.13)

where the operators Ĥ and N̂ij , (i, j) ∈ {(1, 0), (0, 1)} are given by

Ĥ = − ∂

∂τ
+ κ (m− u)

∂

∂u

− u

(
ρsu σs σ̃(z) (ik)

∂

∂u
+ ρsv σs σv (kl) + ρvu σv σ̃(z) (il)

∂

∂u

)
− 1

2
u

(
σ2s
(
k2 − ik

)
− σ̄2(z)

∂2

∂u2
+ σ2v

(
l2 − il

))
,

N̂ij =



−



1
2


ρsyσs

〈
b(·)∂ϕ(·,z)∂y

〉
(ik) ∂2

∂u2

−ρuy
〈
f(·, z)b(·)∂ϕ(·,z)∂y

〉
∂3

∂u3

+ρvyσv

〈
b(·)∂ϕ(·,z)∂y

〉
(il) ∂2

∂u2



+
〈
b(·)∂ψ(·,z)∂y

〉

ρsyρsuσ

2
s

(
k2
)

+σsσv (ρvyρsu + ρsyρvu) (kl)

+ρvyρvuσ
2
v

(
l2
)


∂
∂u

+
〈
f(·, z)b(·)∂ψ(·,z)∂y

〉
ρuy (ρsuσs (ik) + ρvuσv (il))

∂2

∂u2



, (i, j) = (1, 0)

d(z)
(
ρszσs(ik)− ρuzσ̃(z)

∂
∂u + ρvzσv(il)

)
∂
∂z

, (i, j) = (0, 1)

.

Here, consider the the solution P̂ij , (i, j) ∈ {(1, 0), (0, 1)} has the form
of

P̂ij =

i+2j∑
n=0

B n | ij Ã(τ, k, l, u, z) ĥ(k, l),(4.14)
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Putting (4.14) into the PDEs (4.13), we can find that the functions

B n | ij , (i, j) ∈ {(1, 0), (0, 1)}, n ∈ {0, · · · , i + 2j} are the solutions of
the ODEs given by



[
∂
∂τ + n

(
η(k, l, z)− σ̄2(z)A1 (τ, k, l, z)

)]
B n | ij(τ, k, l, z)

= Rn | ij(τ, k, l, z)

B n | ij(0, k, l, z) = 0
∂
∂τB

0 | ij(τ, k, l, z) = κmB 1 | ij(τ, k, l, z)

B 0 | ij(0, k, l, z) = 0

.

(4.15)

As the ODEs (4.15) are the well-known Riccati equations, the solution
method has already known well. So, we directly provide the solutions
without the detail solution process, since there are many references for
the Riccati equations. For instant, see Hille [8].

5. Conclusion

This paper is a research for the Heston’s stochastic vol-of-vol model
underlying the options vulnerable to credit risk. In contrast to listed
options, the OTC options has the possibility of exposure to default by
the option writer. So it’s necessary for the OTC options to have the
payoff structure determined by the underlying asset as well as the coun-
terparty asset. In this paper, we focused on obtaining the corrected
price caused by the vol-of-vol structure based on the Heston’s stochastic
volatility derived by the closed-form formula corrected to the Heston’s
stochastic volatility. A possible avenue for an extension of future work
is to enhance the accuracy of approximation by deriving the high order
terms.
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Appendix: the functions An, n ∈ {0, 1} and Bn | ij , n ∈ {0, 1, · · · , i+
2j}, (i, j) ∈ {(1, 0), (0, 1)} in (4.9) appeeared in Proposition 4.3

5.1. The functions An(τ, k, l, z), n = 0, 1, η(k, l, z), ζ(k, l, z) and
ξ(k, l, z) appeared in the zero order term P00 of the series
expansion (4.1)

A1(τ, k, l, z) =
η(k, l, z) + ζ(k, lz)

σ̄2(z)
· 1− eτζ(τ,k,l,z)

1− ξ(k, l, z)eτζ(τ,k,l,z)
,

A0(τ, k, l, z) =
κm

σ̄2(z)

[
(η(τ, k, l, z) + ζ(τ, k, l, z)) τ − 2 ln

(
1− ξ(τ, k, l, z)eτζ(τ,k,l,z)

1− ξ(τ, k, l, z)

)]
η(k, l, z) = κ+ ρsuσsσ̃(z)(ik) + ρvuσvσ̃(z)(il),

ζ(k, l, z) =
√
η2(k, l) + σ̄2(z) (σ2s (k

2 − ik) + 2ρsvσsσv(kl) + σ2v (l
2 − il)),

ξ(k, l, z) =
η(k, l, z) + ζ(k, l, z)

η(k, l, z)− ζ(k, l, z)
,

5.2. The functions B n | 10(τ, k, l, z), n = 0, 1 and R 1 | 10(τ, k, l, z)
appeared in the first order term P10 of the series expan-
sion (4.1)

B 1 | 10(τ, k, l, z) =

∫ τ

0
e(τ−s)ζ(k,l,z)

(
1− ξ(k, l, z)es ζ(k,l,z)

1− ξ(k, l, z)eτ ζ(k,l,z)

)2

R 1 | 10(s, k, l, z) ds,

B 0 | 10(τ, k, l, z) = κm

∫ τ

0
B 1 | 10(s, k, l, z)ds

R 1 | 10(τ, k, l, z) =
1

2


ρsyσs (ik)

〈
b (·) ∂ϕ(·,z)∂y

〉 (
A1 (τ, k, l, z)

)2
−ρuy

〈
f (·, z) b (·) ∂ϕ(·,z)∂y

〉 (
A1 (τ, k, l, z)

)3
+ρvyσv (il)

〈
b (·) ∂ϕ(·,z)∂y

〉 (
A1(τ, k, l, z)

)2


+
(
ρsyρsuσ

2
s

(
k2
)
+ ρvyρvuσ

2
v

(
l2
))〈

b (·) ∂ψ (·, z)
∂y

〉
A1 (τ, k, l, z)

+ ρuy (ρsuσs (ik) + ρvuσv (il))

〈
f (·, z) b (·) ∂ϕ (·, z)

∂y

〉(
A1 (τ, k, l, z)

)2
+ (ρsuρvy + ρvuρsy)σsσv (kl)

〈
b (·) ∂ψ (·, z))

∂y

〉
A1 (τ, k, l, z) ,
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5.3. The functions B n | 01, n = 0, 1, 2, R 1 | 01(τ, k, l, z) and R 2 | 01(τ, k, l, z)
of the first order term P01 of the series expansion (4.1)

B 2 | 01(τ, k, l, z) =

∫ τ

0
e2(τ−s)ζ(k,l,z)

(
1− ξ(k, l, z)es ζ(k,l,z)

1− ξ(k, l, z)eτ ζ(k,l,z)

)4

R 2 | 01(s, k, l, z) ds,

B 1 | 01(τ, k, l, z) =

∫ τ

0
e(τ−s)ζ(k,l,z)

(
1− ξ(k, l, z)es ζ(k,l,z)

1− ξ(k, l, z)eτ ζ(k,l,z)

)2

R 1 | 01(s, k, l, z) ds,

B 0 | 01(τ, k, l, z) = κm

∫ τ

0
B 1 | 01(s, k, l, z)ds

R 2 | 01(τ, k, l, z) =
(
ṼuzA

1(τ, k, l, z)− Ṽsz(ik)− Ṽvz(il)
) ∂A1

∂σ̃
(τ, k, l, z)

+
(
V̄uzA

1(τ, k, l, z)− V̄sz(ik)− V̄vz(il)
) ∂A1

∂σ̄
(τ, k, l, z)

R 1 | 01(τ, k, l, z) =
(
ṼuzA

1(τ, k, l, z)− Ṽsz(ik)− Ṽvz(il)
) ∂A0

∂σ̃
(τ, k, l, z)

+
(
V̄uzA

1(τ, k, l, z)− V̄sz(ik)− V̄vz(il)
) ∂A0

∂σ̄
(τ, k, l, z)

+

(
Ṽuz

∂A1

∂σ̃
(τ, k, l, z) + V̄uz

∂A1

∂σ̄
(τ, k, l, z)

)
+
(
2κm+ σ̄2(z)

)
B 2 | 01(τ, k, l, z),

Ṽsz(z) = ρszσsd(z)σ̃
′(z), Ṽvz(z) = ρvzσvd(z)σ̃

′(z), Ṽuz(z) = ρuzd(z)σ̃(z)σ̃
′(z)

V̄sz(z) = ρszσsd(z)σ̄
′(z), V̄vz(z) = ρvzσvd(z)σ̄

′(z), V̄uz(z) = ρuzd(z)σ̃(z)σ̄
′(z)
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